Le cobalt

Le cobalt (II) peut former des complexes avec différents ligands, par exemple $Co(H_2O)_6^{2+}$ et $Co(Cl)_4^{2-}$ avec les ligands eau et chlorure. Ces deux complexes sont colorés. Le maximum de l'absorbance du premier complexe se situe à 540 nm ; le maximum du second à 670 nm.

- 1. Ecrire la configuration électronique du cobalt Co, ainsi que des ions Co²⁺ et Co³⁺, dans leur état fondamental. Combien d'électrons de valence chacune de ces trois espèces possède-t-elle ?
- 2. Quelle est la couleur de chaque complexe? Justifier.
 - On rappelle que le spectre visible correspond à des longueurs d'onde allant de 390 nm (violet) à 780 nm (rouge).
 - On s'intéresse maintenant à la géométrie et à la stéréochimie de complexes du cobalt (II) et du cobalt (III).
- 3. Représenter le complexe $Co(H_2O)_6^{3+}$ en montrant sa structure tri-dimensionnelle et le nommer.
- 4. Des réactions de substitutions successives du ligand H_2O par le ligand NH_3 peuvent avoir lieu et mener à la formation de six complexes de type : $Co(NH_3)_n(H_2O)_{6-n}^{3+}$, avec n un entier. Pour n=1, 2 et 3, dénombrer et dessiner tous les stéréoisomères possibles. Préciser, en justifiant, si ces complexes sont chiraux. .
 - Dans ce qui suit, on étudie le complexe $[Co(Cl)(NH_3)_5]Cl_2$. Ce complexe est synthétisé au préalable sous forme d'un sel solide et on cherche à le caractériser en déterminant, par exemple, sa masse molaire. Pour cela, une masse m=0,10 g du solide est dissoute dans l'eau et la solution obtenue est mise en contact avec une résine échangeuse de cations. Cette résine a été au préalable plongée dans une solution d'acide chlorhydrique, ce qui permet à des ions H^+ de se fixer sur la résine. Quand la solution de complexe est introduite, un échange de cations se produit et les ions $Co(Cl)(NH_3)_5^{2+}$ se fixent alors sur la résine.
- 5. Ecrire l'équation de la réaction d'échange des ions sur la résine.
 - Par entraînement à l'eau distillée, on recueille ensuite tous les ions H⁺ échangés dans un volume total de 100 cm³. On prélève alors un quart de cette solution que l'on dose avec une solution de soude de concentration molaire 0,020 mol/L. L'équivalence du dosage est repérée à l'aide de la phénolphtaléine et correspond à un volume de soude versé de 10 cm³.
- 6. Déduire de ce protocole la quantité d'ions $Co(Cl)(NH_3)_5^{2+}$ présents initialement dans la solution.
- 7. En déduire la masse molaire du complexe $Co(Cl)(NH_3)_5^{2+}$. Est-ce le résultat attendu ?

Données :

- Numéros atomiques ${\cal Z}$:

Elément	С	О	Со
Numéro atomique Z	6	8	27

- Masses molaires atomiques:

Elément	Н	N	О	S	Cl	Со
Masse molaire atomique (g.mol ⁻¹)	1,0	14,0	16,0	32,0	35,5	59,0