LE DIOXYDE DE SOUFRE, UN GAZ POLLUANT

Le dioxyde de soufre SO_2 est un gaz polluant, à l'origine de la formation des pluies acides, problème écologique majeur dans les régions industrialisées. On étudie, à la température T=298 K et sous une pression totale fixée P=1,0 bar, la réaction de solubilisation dans l'eau du $SO_{2(g)}$, considéré comme un gaz parfait. On suppose que la seule espèce présente dans l'eau est le dioxyde de soufre hydraté noté $SO_{2(gg)}$.

L'équation de la réaction de dissolution est :

$$SO_{2(g)} = SO_{2(aq)}$$
.

1. Exprimer le potentiel chimique μ_g du dioxyde de soufre gazeux, à la température T, en fonction de la pression partielle P_{SO_2} .

Solution: $\mu_g = \mu_g^o + R.T.ln(\frac{P_{SO_2}}{P^o})$

2. Exprimer le potentiel chimique μ_{aq} du dioxyde de soufre hydraté, soluté supposé infiniment dilué, à la température T, en fonction de la concentration molaire en dioxyde de soufre hydraté c.

Solution: $\mu_{aq} = \mu_{aq}^o + R.T.ln(\frac{c}{c^o})$

3. Quelle est la relation entre les potentiels chimiques lorsque l'équilibre de dissolution est établi ?

Solution: $\mu_g = \mu_{aq}$

4. En déduire une expression de la constante thermodynamique K associée à cette réaction en fonction des potentiels chimiques standard. Calculer sa valeur.

Solution: On a :

$$\mu_g^o + R.T.ln(\frac{P_{SO_2}}{P^o}) = \mu_{aq}^o + R.T.ln(\frac{c}{c^o})$$

Donc

$$\mu_g^o - \mu_{aq}^o = R.T.ln(\frac{c.P^o}{c^o.P_{SO_2}}) = R.T.ln(K)$$

Finalement:

$$K = e^{\frac{\mu_g^o - \mu_{aq}^o}{R.T}} = 1,22$$

Révisions PCSI

La forme hydratée du dioxyde de soufre $SO_{2(aq)}$ est souvent notée H_2SO_3 . À pH=5,0 (pH moyen des gouttelettes de pluie dans l'atmosphère) on le trouve sous forme de l'ion hydrogénosulfite HSO_3^- . L'atmosphère, de par la présence de dioxygène, d'ozone et de peroxyde d'hydrogène, favorise l'oxydation des ions HSO_3^- en ions sulfate SO_4^{2-} . Cette réaction entraine l'abaissement du pH des eaux de pluie dans les régions très industrialisées. Les gouttelettes de pluie contiennent également des cations métalliques capables de catalyser la réaction d'oxydation. On se propose d'étudier la cinétique de la réaction d'oxydation des ions HSO_3^- en ions sulfate SO_4^{2-} par le dioxygène dissous en présence d'ions Fe^{3+} selon l'équation :

$$HSO_{3(aq)}^{-} + \frac{1}{2} SO_{2(aq)} = H_{(aq)}^{+} + SO_{4(aq)}^{2-}$$

Des expériences menées en laboratoire et reconstituant le milieu naturel ont permis de proposer un mécanisme complexe dont certaines étapes sont proposées ci-dessous. On se place à 25 °C et sous une pression atmosphérique de 1 bar. Toutes les espèces sont dissoutes dans l'eau y compris O₂.

$$\begin{split} \text{HSO}_3^- + \text{Fe}^{3+} &\to \text{H}^+ + \text{SO}_3^{-\bullet} + \text{Fe}^{2+} \\ \text{H}^+ + \text{SO}_3^- \bullet + \text{Fe}^{2+} &\to \text{HSO}_3^- + \text{Fe}^{3+} \\ \text{SO}_3^- \bullet + \text{O}_2 &\to \text{SO}_5^- \bullet \\ \text{SO}_3^- \bullet + \text{SO}_5^- \bullet &\to \text{S}_2 \text{O}_6^{2-} + \text{O}_2 \\ \text{SO}_3^- \bullet + \text{SO}_5^- \bullet &\to \text{S}_2 \text{O}_6^{2-} + \text{O}_2 \\ \text{SO}_3^- \bullet + \text{SO}_5^- \bullet &\to \text{S}_2 \text{O}_6^{2-} + \text{HSO}_3^- \\ \text{SO}_3^- \bullet + \text{SO}_5^- \bullet &\to \text{S}_2 \text{O}_6^{2-} + \text{HSO}_3^- \\ \text{H}^+ + \text{SO}_4^{2-} + \text{HSO}_3^- \\ \text{H}^- + \text{SO}_3^- \bullet &\to \text{SO}_3^- \bullet \\ \text{H}^- + \text{SO}_3^- \bullet \\ \text{H}^- + \text{SO}_3^- \bullet \\ \text{H}^- + \text{SO}_3^- \bullet \\ \text{H}^-$$

Pour cette dernière étape, la contribution de l'eau à la vitesse est incluse dans la constante k_5 .

5. Justifier que l'approximation de l'état quasi-stationnaire (AEQS) soit applicable au radical $SO_5^{-\bullet}$.

Solution: $SO_5^{-\bullet}$ est formé par la réaction de constante k_3 et disparaît par réaction de constante k4 avec : il s'agit donc d'un intermédiaire réactionnel. Ainsi on peut appliquer l'AEQS à l'intermédiaire $SO_5^{-\bullet}$.

6. En appliquant l'AEQS à l'ion $S_2O_6^{2-}$ et aux radicaux $SO_3^{-\bullet}$ et $SO_5^{-\bullet}$ exprimer la vitesse volumique de la réaction (vitesse d'apparition en ions sulfate SO_4^{2-}) en fonction des concentrations $[O_2]$, $[HSO_3^-]$, $[H^+]$, $[Fe^{2+}]$ et $[Fe^{3+}]$ et des constantes de vitesse.

Solution:

La vitesse volumique de la réaction vaut $v=\frac{d[SO_4^{2^-}]}{dt}=v_5$. En appliquant l'AEQS aux différents intermédiaires : $S_2O_6^{2^-}$: $v_4-v_5=0$; $SO_3^{-\bullet}$: $v_1-v_2-v_3-v_4=0$; $SO_5^{-\bullet}$: $v_3-v_4=0$ On a donc $v_3=v_4=v_5$. Alors $v=v_3=k_3[SO_3^{-\bullet}]$. $[O_2]$. Il faut donc exprimer $[SO_3^{-\bullet}]$ en fonction des réactifs ou produits de la réaction. Grâce à l'AEQS sur $SO_5^{-\bullet}$, on peut isoler $[SO_3^{-\bullet}]$:

$$[\mathsf{SO_3}^{-\bullet}] = \frac{k_1[HSO_3^-][Fe^{3+}]}{k_2[H^+][Fe^{2+}] + 2k_3[O_2]}$$

Enfin on peut exprimer la vitesse de réaction $v: v = \frac{k_1 k_3 [HSO_3^-][Fe^{3+}][O_2]}{k_2 [H^+][Fe^{2+}] + 2k_3 [O_2]}$

7. En négligeant la concentration en ion ferreux $[Fe^{2+}]$ devant celle en dioxygène, montrer que l'expression de la vitesse v est indépendante de la concentration en dioxygène dissous.

Solution: Si on néglige la concentration en Fe²⁺ par rapport à celle de O_2 alors le terme $k_2[H^+][Fe^{2+}]$ devient négligeable devant le terme $2k_3[O_2]$. La vitesse s'exprime donc ainsi :

$$v = \frac{k_1}{2}[HSO_3^-].[Fe^{3+}]$$

Cette expression est en effet indépendante de la concentration en dioxygène.

DONNEES NUMERIQUES

Potentiels chimiques standard à 25 o C:

$$\mu_q^o = -300, 2 \text{ kJ/mol}$$
 et $\mu_{aq}^o = -300, 7 \text{ kJ/mol}.$